3.7.32 \(\int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\) [632]

3.7.32.1 Optimal result
3.7.32.2 Mathematica [A] (verified)
3.7.32.3 Rubi [A] (verified)
3.7.32.4 Maple [B] (warning: unable to verify)
3.7.32.5 Fricas [F]
3.7.32.6 Sympy [F]
3.7.32.7 Maxima [F]
3.7.32.8 Giac [F]
3.7.32.9 Mupad [F(-1)]

3.7.32.1 Optimal result

Integrand size = 25, antiderivative size = 387 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\frac {2 \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b \sqrt {a+b} d}-\frac {2 \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b \sqrt {a+b} d}-\frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d}-\frac {2 a^2 \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \]

output
-2*a^2*sin(d*x+c)/b/(a^2-b^2)/d/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2)+2* 
cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),( 
(-a-b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b 
))^(1/2)/b/d/(a+b)^(1/2)-2*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+ 
b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^( 
1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d/(a+b)^(1/2)-2*cot(d*x+c)*EllipticP 
i((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b 
))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a- 
b))^(1/2)/b^2/d
 
3.7.32.2 Mathematica [A] (verified)

Time = 9.19 (sec) , antiderivative size = 282, normalized size of antiderivative = 0.73 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\frac {\sqrt {\cos (c+d x)} \left (-2 a (a+b) \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+2 b (a+b) \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )-2 (a-b) \left (-2 (a+b) \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+a \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \tan \left (\frac {1}{2} (c+d x)\right )\right )\right )}{b \left (a^2-b^2\right ) d \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {a+b \cos (c+d x)}} \]

input
Integrate[Cos[c + d*x]^(3/2)/(a + b*Cos[c + d*x])^(3/2),x]
 
output
(Sqrt[Cos[c + d*x]]*(-2*a*(a + b)*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + 
Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2* 
b*(a + b)*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Elliptic 
F[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - 2*(a - b)*(-2*(a + b)*Sqrt 
[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticPi[-1, ArcSin[ 
Tan[(c + d*x)/2]], (-a + b)/(a + b)] + a*Sqrt[Cos[c + d*x]/(1 + Cos[c + d* 
x])]*Tan[(c + d*x)/2])))/(b*(a^2 - b^2)*d*Sqrt[Cos[c + d*x]/(1 + Cos[c + d 
*x])]*Sqrt[a + b*Cos[c + d*x]])
 
3.7.32.3 Rubi [A] (verified)

Time = 1.40 (sec) , antiderivative size = 413, normalized size of antiderivative = 1.07, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3276, 3042, 3273, 3042, 3274, 3042, 3288, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 3276

\(\displaystyle \frac {\int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {a \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{3/2}}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{b}\)

\(\Big \downarrow \) 3273

\(\displaystyle \frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)}dx}{a^2-b^2}\right )}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{a^2-b^2}\right )}{b}\)

\(\Big \downarrow \) 3274

\(\displaystyle \frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-(a-b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}\right )}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}\right )}{b}\)

\(\Big \downarrow \) 3288

\(\displaystyle -\frac {a \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}\right )}{b}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\)

\(\Big \downarrow \) 3295

\(\displaystyle -\frac {a \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}\right )}{b}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\)

\(\Big \downarrow \) 3473

\(\displaystyle -\frac {a \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}\right )}{b}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\)

input
Int[Cos[c + d*x]^(3/2)/(a + b*Cos[c + d*x])^(3/2),x]
 
output
(-2*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c 
 + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 
 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(b^2*d) - 
 (a*(-(((2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Co 
s[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a 
*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) 
- (2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + 
d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - 
Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d))/(a^2 
- b^2)) + (2*a*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b* 
Cos[c + d*x]])))/b
 

3.7.32.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3273
Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_ 
)])^(3/2), x_Symbol] :> Simp[-2*a*d*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b 
*Sin[e + f*x]]*Sqrt[d*Sin[e + f*x]])), x] - Simp[d^2/(a^2 - b^2)   Int[Sqrt 
[a + b*Sin[e + f*x]]/(d*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, d, e, f 
}, x] && NeQ[a^2 - b^2, 0]
 

rule 3274
Int[Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2), x_Symbol] :> Simp[(c - d)/(a - b)   Int[1/(Sqrt[a + b*Si 
n[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Simp[(b*c - a*d)/(a - b) 
Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]] 
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3276
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)/((a_) + (b_.)*sin[(e_.) + (f_.)*( 
x_)])^(3/2), x_Symbol] :> Simp[d/b   Int[Sqrt[d*Sin[e + f*x]]/Sqrt[a + b*Si 
n[e + f*x]], x], x] - Simp[a*(d/b)   Int[Sqrt[d*Sin[e + f*x]]/(a + b*Sin[e 
+ f*x])^(3/2), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 
3.7.32.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1035\) vs. \(2(359)=718\).

Time = 9.77 (sec) , antiderivative size = 1036, normalized size of antiderivative = 2.68

method result size
default \(\text {Expression too large to display}\) \(1036\)

input
int(cos(d*x+c)^(3/2)/(a+cos(d*x+c)*b)^(3/2),x,method=_RETURNVERBOSE)
 
output
2/d*(-(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)) 
^(3/2)*(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^2*((csc(d*x+c)^2*a*(1-cos(d*x+c)) 
^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)) 
^(1/2)*(-(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos( 
d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot( 
d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b-(-csc(d*x+c)^2*(1-cos(d*x+c))^ 
2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c)) 
^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2)) 
*b^2+(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+ 
c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+ 
c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2+(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1) 
^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a 
+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b 
-2*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c) 
)^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticPi(cot(d*x+c 
)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*a^2+2*(-csc(d*x+c)^2*(1-cos(d*x+c))^ 
2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c)) 
^2+a+b)/(a+b))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1 
/2))*b^2+csc(d*x+c)^3*a^2*(1-cos(d*x+c))^3-csc(d*x+c)^3*a*b*(1-cos(d*x+c)) 
^3-a^2*(csc(d*x+c)-cot(d*x+c))+a*b*(csc(d*x+c)-cot(d*x+c)))/(csc(d*x+c)...
 
3.7.32.5 Fricas [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")
 
output
integral(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(3/2)/(b^2*cos(d*x + c)^2 + 
 2*a*b*cos(d*x + c) + a^2), x)
 
3.7.32.6 Sympy [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\cos ^{\frac {3}{2}}{\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(cos(d*x+c)**(3/2)/(a+b*cos(d*x+c))**(3/2),x)
 
output
Integral(cos(c + d*x)**(3/2)/(a + b*cos(c + d*x))**(3/2), x)
 
3.7.32.7 Maxima [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")
 
output
integrate(cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a)^(3/2), x)
 
3.7.32.8 Giac [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate(cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a)^(3/2), x)
 
3.7.32.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{3/2}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int(cos(c + d*x)^(3/2)/(a + b*cos(c + d*x))^(3/2),x)
 
output
int(cos(c + d*x)^(3/2)/(a + b*cos(c + d*x))^(3/2), x)